KAP Chemistry Syllabus

Chemistry 121 \& 124: Introductory Chemistry I, II Chemistry 123 \& 126: Introductory Chemistry Lab I, II Hilliard Darby High School
Instructor: Susan Rouch 2016-2017

KAP/AP Chemistry is a college-level chemistry course. It is a second-year coursestudents should have successfully completed a chemistry course in their sophomore or junior years of high school. It emphasizes chemical understanding, both quantitatively and qualitatively, in a laboratory setting. Students should have three credits in Math, credit in Biology, and Chemistry with a " B " or better average.

Students will earn one and one-half credits of AP level laboratory science. The course is taught as a " $1 \frac{1}{2}$ block" course-students will alternate between single period and double period. The double period on alternate days will allow us to
 complete the more rigorous laboratory activities required by the AP curriculum. Classes will either be 48 minutes or 100 minutes in length, with an average of 375 minutes of class time each week. The classes are arranged so that students may take 2 AP Sciences in 3 class periods. A minimum of twenty-five percent of instructional time is dedicated to the lab activities.

Students will be able to earn college credit by scoring well on the AP Chemistry test or they may earn credit through Kenyon College by participating in the KAP program. The AP test will take place in early May; there is an additional fee for the AP test. Extra assignments will be required depending on which option a student chooses. Students should check with their colleges about which option the students should choose.

The six Big Ideas of this course are:
Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions. Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.
Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.
Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

In addition to the Big Ideas, KAP/AP Chemistry incorporates seven Science Practices:
Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems.
Science Practice 2: The student can use mathematics appropriately.
Science Practice 3: The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.

Science Practice 4: The student can plan and implement data collection strategies in relation to a particular scientific question. [Note: Data can be collected from many different sources, e.g., investigations, scientific observations, the findings of others, historic reconstruction, and/or archived data.]
Science Practice 5: The student can perform data analysis and evaluation of evidence.
Science Practice 6: The student can work with scientific explanations and theories.
Science Practice 7: The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains.

Required Text: this is available on Canvas

Tro, Nivaldo J., Chemistry, A Molecular Approach, $3^{\text {rd }}$ ed., Upper Saddle River, NJ: Pearson Education, Inc., 2012.

Other Supplies: Bound lab record book (needs to be purchased), approved safety goggles (note—safety glasses are not an acceptable substitute for goggles), iPad, and a graphing calculator.

The Laboratory Program:

The laboratory component is, at minimum, 25% of the instructional time. Investigations will be integrated throughout the course. Students will also need to spend time out of class, both preparing for and completing laboratory investigations. Students will typically work with a partner, but some investigations require groups of three or four.

Students are required to have a bound lab notebook.

The lab notebook will have a table of contents, which will include:

- Date the investigation was performed
- Title of investigation
- Page numbers of the investigation

Each laboratory investigation will have the following components:

- Title and date
- Scientific question
- Procedure
o What you actually do in the lab, written as you do it
o This must be initialed by your teacher before you leave the laboratory area
- Data
o Written directly into the lab notebook
o Written alongside the procedure, or, for repetitive data, in a table
- Data analysis
- Lab questions, copied into the notebook, with answers written clearly and concisely

In addition, some investigations will include

- Prelab group work
- Prelab Canvas quizzes
- Graphs or charts
- Analysis of class data
- Error analysis
- Presentation to the class
- Other components as needed

Some (but not necessarily all) of the investigations come from, or are modified from:
Randall, Jack. Advanced Chemistry with Vernier. Oregon: Vernier Software and Technology, 2004.
The College Board. AP Chemistry Guided Inquiry Experiments: Applying the Science Practices. 2013.
Flinn Scientific Advanced Inquiry Labs, 2013
NSF Summer Project in Chemistry -- Hope College
Volz, Donald L.; Smola, Ray; Investigating Chemistry through Inquiry
Holmquist, Dan D.; Randall, Jack; Volz, Donald L.; Chemistry with Vernier
Vonderbrink, Sally. Laboratory Experiments for AP Chemistry. Batavia: Flinn Scientific, 2001.
Bernstein, Jesse; Bracken, Jeffrey; Price, Paul. Advanced Placement Chemistry Laboratory Manual: An Inquiry and Forensic Approach Towards Chemical Experimentation, 2009

Academic honesty:

Students often work together in advanced science classes. This is valuable and I encourage working together. HOWEVER, copying another person's homework, lab report, or answers to any other sort of assessment is CHEATING. While you and your lab partner will share data, you need to do your OWN calculations and your OWN analysis. Using unapproved outside resources is also cheating. You will not receive credit for an assignment or assessment if you cheat.

As a student of integrity, you will neither give nor receive unauthorized aid in class work, quizzes, examinations, preparation of reports or projects, or in any other work that I use to evaluate you without specific permission for collaboration or without proper citation. All work may be submitted to a variety of sources to check for plagiarism.

Example: You do not know how to approach solving an old AP Test question that you have for homework. What should you do?
a) Search the internet for the answer
b) Search the internet for another explanation of the topic
c) Copy the answer from your friend or older sister

NO-that is CHEATING
YES—good idea!
d) Tell your friend you could do a, b, and c but are stuck on d. Ask your friend to point you in the right direction.
e) Steal the answer key from your teacher
f) Ask your teacher for help a day or two before the due date
h) Ask your teacher for help a day or two after the due date
i) Cry
j) Ignore it and hope it goes away.

NO-that is CHEATING
YES—good idea!
NO-that is CHEATING
YES—good idea!
OK—Better late than never, but your teacher might get annoyed
OK for the short term, but you still need to figure out the answer!
NO-it won't go away, and neither will your teacher

Abstract

About KAP... Students who will have junior or senior status will have the opportunity to apply for admission to the KAP (Kenyon Academic Partnership) program. The program allows students to get college credit while still in high school. Students will have an official transcript from Kenyon College. Students who wish to enroll in KAP courses must be strongly motivated and should have demonstrated success in the subject areas they wish to pursue. Since KAP courses are demanding, readiness and willingness to work hard are essential for success. When students register for their courses, they must complete a separate application for the KAP program. The application includes a teacher recommendations and a transcript. There is an additional fee for KAP and additional coursework may be required. Students participating in the KAP program will receive credit for the four following Kenyon courses: Chemistry 121 Introductory Chemistry Lecture (0.5 Kenyon units; 4 semester hours) Chemistry 123 Introductory Chemistry Laboratory (0.25 Kenyon units; 2 semester hours) Chemistry 124 Biophysical and Medicinal Chemistry (0.5 Kenyon units; 4 semester hours) Chemistry 125 Biophysical and Medicinal Chemistry (0.25 Kenyon units; 2 semester hours)

NOTES:

a. Although there is a biological focus to the second semester Kenyon courses, the major chemical topics (equilibrium, atomic structure and bonding, kinetics) are the same as a traditional second-semester chemistry course. Students enrolled in KAP will have the same chemistry content as those enrolled only in AP Chemistry.
b. Students may earn a maximum of 3.0 Kenyon units while in high school.
c. I will submit four separate grades to Kenyon College. Students receive separate lecture and lab grades for each semester. These grades are not figured into the Darby GPA and may be different than the grade on the student's Darby's report card.

About the AP Test...

Success on the AP test requires significant effort outside of class.

- All students not enrolled in KAP are expected to take the AP Chemistry Test.
- We will spend time reviewing for the AP test-all students will be responsible for the material, regardless of whether they take the actual AP test. This may include practice AP Test questions that are scored as the College Board scores them. These questions may count towards a student's grade.

Assessment...

The class is graded on a weighted scale. Tests and quizzes are 70% of the grade, labs, lab quizzes, and projects are 30%.

For students who receive a C or higher, AP courses at Hilliard Darby High School receive an extra quality point when calculating grade point average. ($A=5.0, B=4.0, C=3.0, D=1.0, F=0.0$)

Homework Students should be doing homework daily. Homework will be checked by pre-announced quizzes. Homework is for practice, and some students need more practice than others.

```
****Examples****:
```

1) There is a quiz on Tuesday over gas laws. When the quiz is returned on Wednesday, the student realizes that she misunderstood part of the topic. She can meet with me after school on Wednesday and take a make-up quiz on Thursday.
2) There is a quiz on Tuesday over gas laws. When the quiz is returned on Wednesday, the student realizes that she misunderstood part of the topic. She buried the quiz in her binder. On Friday, she wants
to retake the quiz. Sorry-too late!
3) There is a quiz on Tuesday over gas laws. When the quiz is returned on Wednesday, the student realizes that she misunderstood a small component, but her grade was good enough. At the end of the quarter she realizes that she needs three more points. She wants to retake the quiz. Sorry-too late!

Free Response Questions are questions from old AP tests. All students must turn in Free Response questions. Labs are done frequently. Since most occur on double-block days, students should try not to miss lab days. All labs must be completed to receive credit for the course. Some universities require students to submit a lab notebook or portfolio to receive college credit.
Quizzes are given frequently. The primary purpose of the quizzes is to make sure everyone is keeping up with the material.
Tests are given at the end of each unit. Tests may be similar in format to the AP Test that students will take in the spring. Lab questions will be included on tests. All students take an in-class college-level test. The grade is part of the fourth quarter.

More about tests and quizzes...

- Tests and quizzes serve several purposes: they are typically viewed as a way for me to evaluate your progress, but they are also learning experiences for students.
- Tests will always be announced at least two days prior. Quizzes will almost always be announced. They may be written or lab-based.
- To receive full credit on tests and quizzes, show all calculations. Explain your answers completely and concisely-explanations help me to understand your thoughts.
- Each new test will include material from previously studied chapters as well as the summer review. Quizzes over earlier material will appear throughout the year.
- Tests may include sample free response questions from old AP Chemistry tests

Curriculum Content Map

Beginning of the year

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.
Learning Objectives: 1.1, 1.2, 13,14,1.17,1.18,1.19,1.20,3.1, 3.2, 3.3,3.4,3.3,3.6,3.9,3.10,
Textbook Chapter(s): 1,2,3,

Unit \& Topics	Laboratory activities
What's that compound-Physical and chemical processes	Decomposition of Baking Soda

- Nomenclature
o Inorganic compounds
o Simple covalent compounds
o Simple Hydrocarbons and functional groups
0 Acids and bases
o Coordination compounds
- Empirical formulas
- Review
o Balancing equations
o Stoichiometry
o Limiting reactants
o Physical and chemical changes

Decomposition of Baking Soda

- Using stoichiometry to determine the products formed when baking soda is heated
- SP 1, 2, 4. 5, 6

Guided inquiry: Green Analysis of a Mixture

- Determine the composition of a carbonate/bicarbonate mixture
- Science Practices 1, 2, 4, 5, 6

Modeling with Hydrocarbons

- Model hydrocarbons with and without functional groups
- Science Practices 1, 6

	Precision, accuracy, and measurement Significant figures	Synthesis of a Coordination Compound - Synthesize and isolate crystals of $\mathrm{K}_{\mathrm{x}}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{\mathrm{y}} \cdot \mathrm{ZH}_{2} \mathrm{O}\right.$ - Science Practices 2, 4, 6 Standardization of Sodium Hydroxide - Determine the concentration of NaOH by titrating with a primary standard - SP 1, 2, 5, 6 Determining the Empirical Formula of a Coordination Compound - Dehydration to determine percent water and the waters of hydration in the formula - Permanganate titration to determine the percent oxalate and the number of oxalate ions in the formula - Ion exchange and pH titration to determine the percent potassium and percent iron and the number of potassium ions in the formula - SP $1,2,4,6$
Activity: Students are given a problem set and asked to determine the limiting reagents for a chemical reaction Activity: Students will use dry-erase boards to draw particulate models of chemical reactions so that they can translate between macroscopic observations, chemical symbols, and particle views		

September-October
Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.
Learning Objectives: 1.14,115,116

Textbook Chapter(s):

Unit \& Topics
What's that compound-Using spectroscopy

- Mass Spectrometry
o Isotopic determination
o Molar mass and functional groups of a small organic compound
- Types of Spectroscopy
o UV-Vis spectroscopy
o IR spectroscopy
o NMR spectroscopy
- Using spectroscopic techniques to determine the structure of a molecule

Laboratory activities

Guided inquiry: Analysis of Food Dyes in Beverages

- Use visible spectroscopy and Beer's Law to determine the concentration of blue dye in a sports drink
- Science Practices 2, 4, 5, 6

Guided inquiry: Percent Copper in Brass

- Use visible spectroscopy and Beer's Law to determine the amount of copper in a sample of brass
- Authentic or Not? Chemistry Solves the Mystery
o ChemMatters article(April 2011) \& podcast relating the use of spectroscopy to determining the authenticity of paintings
o Chemical and Engineering News article on the role of chemists in art conservation (http://pubs.acs.org/cen/coverstory/ 7931/7931art.html
- Science Practices 4, 5, 6

What's that molecule?

- Field trip to a local college to run IR and NMR of an unknown compound then determine the structure of the substance
- Science Practices 1, 4, 5, 6, 7

Mid-autumn
Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.
Learning Objectives: $21,2.3,2.4,2.5,2.6,2.10,2.11,2.13,2.16,2.17,2.19,2.20,2.262 .12,2.16$, 2.22, 2.23, 2.24, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32,
Textbook Chapter(s):5, 11

Unit \& Topics	Laboratory activities
Gas, Liquids and Solids	Properties of Air

- Phases of matter
- Particulate models of solids, liquids, and gases
- Phase changes and phase diagrams
- Vapor pressure, boiling points, and freezing points
- Qualitative observations relating pressure, volume, temperature, moles of particles
- Calculations involving combined gas laws, the ideal gas law, and gas densities
- Stoichiometry involving balanced equations, mass, moles, and gas laws
- Dalton's Law of Partial Pressures including combining 2 or more flasks into one, mole fractions, and collecting gases over water
- Kinetic molecular theory including calculating average kinetic energy and molecular speed of a gas
- Deviations between ideal behavior of gases
- Types of intermolecular forces
- Impact of intermolecular forces on physical properties
- Electronegativity, bond polarity, and molecule polarity
- Ionic bonding and Coulomb's Law
- Metallic bonding
- Explore changes in behavior of objects in a reduced-pressure environment and draw particulate models of what they observe
- SP 7

Molar mass of an unknown gas

- Determine the molar mass of an unknown gas using the Ideal Gas Law
- SP 2, 5

Guided Inquiry: What volume do you want?

- Using Mg and excess HCl , collect an assigned amount of H_{2} gas over water
- SP 2, 3, 4

Qualitative Analysis and Chemical Bonding

- Determine the identity of six unknown substances based upon chemical \& physical properties
- SP 1, 4, 5, 6, 7

Activity: Students will use interactive websites and KMT to

- determine macroscopic changes in gases based upon particulate models
- examine phase changes by looking at intermolecular interactions

Late autumn
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.
Learning Objectives:
Textbook Chapter(s): 4,182

Unit \& Topics	Laboratory activities

Chemical Reactions in Solution

- Types of electrolytes
- Electrolytes
- Concentration Terms - Molarity
- Dilution Problems
- Stoichiometry Problems with Solutions (review)
- Classification of reaction types
o Double-replacement, synthesis, decomposition, single-replacement, combustion
o Redox, acid-base, precipitations
- Predicting products of DR reactions based on solubility rules
- Assigning oxidation numbers
- Determining oxidation \& reduction halfreactions

Mini-labs looking at properties of gases dissolved in solution, redox, acids \& bases, and precipitates

- SP 5

Guided Inquiry: Driving under the influence

- Use $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ redox reaction. visible spectroscopy, and Beer's Law to determine the percent alcohol in a sample.
- Write a letter which provides evidence to justify the students' claim
- SP 3, 4, 5, 6

Guided Inquiry: Qualitative Analysis

- Identification of ions present in an unknown solution
- SP 4, 5, 6
- Predicting products of SR reactions based on activity series
- Molecular and net-ionic chemical equations
- Predicting products of acid-base reactions

Late autumn/early winter
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in dynamic competition, sensitive to initial conditions and external perturbations.
Learning Objectives: 5.16, 5.17, 5.18, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.21, 6.22, 6.23, 6.24, 6.25
Textbook Chapter(s):14

Unit \& Topics	Laboratory activities

Equilibrium

- Reversible processes and Reactions
- Types of Systems
- Kinetics relationship to Equilibrium
- Equilibrium Expressions
- Equilibrium Constants
- LeChatelier's Principle
- Equilibrium Stresses

Laboratory activities

Guided Inquiry: Applications of LeChatelier's
Principle

- Observing the effects of changes in starting conditions and predicting the direction of shift
- SP 4,5, 6

Determine the Equilibrium Constant of FeSCN^{2+}

- Equilibrium Calculations
- Molar Solubility
- Common Ion Effects
- Reaction Quotients
- Student will use a prescribed procedure to perform a chemical reaction and use a series of calculations to determine the equilibrium constant for a system at equilibrium:

1. Vernier technology
2. Beer's Law

- \quad SP 1, 2, 5, 6, 7

Determining the Equilibrium Constant of a Silver complex

- Student will use semi-guided inquiry to determine the $\mathrm{K}_{\text {eq }}$ for a complex ion and predict the $K_{\text {eq }}$ for other reactions:
- SP 2, 3, 5, 6, 7

Activity: Students will use interactive websites to explore the ideas of equilibrium and LeChatelier's principle. Students will apply their knowledge to maximize the amount of a specific product in a reaction

Early winter

Big idea 2: Chemical and Physical properties of materials can be explained by the structure and arrangement of atoms, ions, or molecules and the forces between them.
Learning Objectives: 2.8, 2.9, 3.10

Textbook Chapter(s): 12
Unit \& Topics \quad Laboratory activities

Solutions

- Miscibility and Immiscibility
- Process of Dissolution
- Dissolution versus Ionization
- Solubility Terms
- Solubility Curves
- Henry's Law
- Raoult's Law
- Osmosis
- Deviation from Raoult's Law
- Colloids

Separation of Components of a Homogeneous
Mixture Using Simple Distillation

- Separate a simple mixture
- Test the solubility of iodine in the distillates to determine the identity of the distillates
- SP 3

Early winter

Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in dynamic competition, sensitive to initial conditions and external perturbations.	
Learning Objectives: 1.20, 3.7, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20	
Textbook Chapter(s): 15, 16	
Unit \& Topics	Laboratory activities
Acids, Bases and Salts - Dissociation versus Ionization - Preparation Acids, bases and salts	Investigating the Effects of Acid Rain

- Classification of Acids and bases
- Bronsted-Lowry theory of acids and bases
- Degree of Ionization
- Equilibrium constants for acids and bases
- Weak acids and bases
- Binary acids versus oxyacids
- Determination of acid and base properties based on structure
- Ionization of water
- pH and pOH
- Acid-base stoichiometry problems - review
- Ionization calculations of weak acids and bases
- Henderson-Hasselbach equation
- Titration calculations
- Indicators
- Types of salts
- Dissociation of salts and buffers
- Students will model an acid-rain environment and make observations of the effects on natural materials
- SP 1, 3, 5

Determination of Molecular Weight and K_{a} of an Unknown Acid

- pH probes
- Titration curves using data acquisition (Logger Pro)
- Determination of Equivalence Point using $2^{\text {nd }}$ derivatives
- Determination of midpoint to determine pK_{a}
- Vernier technology
- SP 2, 5, 6

pH of various salts

- \quad Students will predict the relative pH of salts and test their predictions
- SP 5, 6

Using and Designing a Buffer

- Students will use their understanding of buffers to create a buffer of a specific pH
- SP 2, 3, 5, 6

Using pH indicators

- Students will observe the changes of various pH indicators at a range of pH levels and identify an unknown based upon their observations
- \quad SP 5, 7

Guided Inquiry: Acidity of Beverages, Lab \#4

- Using acid-base chemistry to determine the acidity of various beverages
- \quad SP 4, 5, 6, 2,

Activity: Students will calculate the pH of solutions under a variety of conditions

Mid-winter
Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions. Learning Objectives: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9

Textbook Chapter(s): 13,19.6

Unit \& Topics	Laboratory activities
Kinetics $\bullet \quad$ Rates relationship to collisions	

- Rates relationship to collisions

The Vitamin C lodine Clock reaction

- Reaction Mechanisms
- Activation energy
- Small-scale clock reaction with a focus on using greener reactants
- Nature of reactants and Interfacial Surface Area
- Temperature and Pressure effects on Rates
- Catalyst - Homogenous and Heterogeneous
- Potential Energy Diagrams - review
- Activated Complex and Intermediates
- Arrhenius Equation
- Maxwell-Boltzman Diagram
- Average rate
- Rates relationship to stoichiometry
- \quad SP 2,5, 6

Crystal Violet Kinetics

- Determine the integrated rate law of a reaction based on spectrophotometric analysis
- \quad SP 1, 2, 5, 6,

Activity: In collaborative groups, students will evaluate possible reaction mechanisms to determine which are consistent with experimental data

Late winter/early spring
Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in mater.
Learning Objectives: 3.11, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.12, 5.13, 5.14

Textbook Chapter(s): 6,17

Unit \& Topics	Laboratory activities

Thermochemistry

- Introduction to Thermodynamics
- Conservation of Energy
- State Functions
- Potential Energy
- Kinetic Energy
- Calorimetry
- Heat of Fusion
- Heat of Vaporization
- Specific Heat
- Heat of Dilution
- Heat of Solution
- Hess's Law - direct and indirect
- Bond Dissociation energies
- Gibbs Free energy Equation
- Entropy

Laboratory activities

Combustion of

- Students will investigate the effectiveness of a variety of combustion reactions in heating water and perform calorimetry calculations using lab data
- SP 4, 5

Heat of Neutralization (Hess's Law)

- Students will use a prescribed procedure to perform a chemical reaction and use a series of calculations to determine the heat of neutralization for that reaction.
- SP 2, 5

Heat Of Dissolution (Determining K, $\Delta \mathrm{S}, \Delta \mathrm{G}$ of Urea)

- Students will use a prescribed procedure to perform a chemical reaction and use a series of calculations to determine the heat dissolution for that reaction.
- SP 2, 5

Activity: Given a set of conditions, the students determine if the situation is thermodynamically favored or not favored by looking at entropy, enthalpy, and Gibbs Free Energy

Early spring
Big Idea 3: Changes in mater involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.
Learning Objectives: $3.12,3.13,5.14,5.15,6.25$

Textbook Chapter(s): 18

Unit \& Topics	Laboratory activities
Electrochemistry and Thermodynamics - Oxidation and reduction - Substances gaining potential - Types of electrochemical cells - Voltaic cells - Cell potential - Concentration dependence of E - Cell potentials and equilibrium - Metal electrodes - Reference electrodes - Indicator electrodes - Applications of voltaic cells - Electrolysis - Faraday's law - Electrolytic Cells - Order of reduction - Application of electrolytic cells - Relationship of Equilibrium and Q and their relationship to E	Investigations of Voltaic Cells Measure the voltage of a variety of reactions between a $\mathrm{Cu} / \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ half-cell and other metal/metal ion half-cells - Predict the electrochemical potential of a variety of reactions and evaluate the quality of the predictions by measuring the voltage of those cells - Explore the effects of on the measured electrochemical potential - SP 2, 5, 6 Copper Plating Lab - Determine the number of faradays, coulombs, and current used to coat an electrode with copper - SP 2, 6

Activity: Students will calculate electrochemical potentials of reactions given a table of half-cell reactions. They will predict the change in potential as the concentration of a metal ion changes.

Mid-spring
Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangement of atoms. These Atoms retain their identity in chemical reactions.
Learning Objectives: 1.5, 1.6, 1.7, 1.8, 1.12, 1.13, 1.14, 1.15

Textbook Chapter(s):27,8,	
Unit \& Topics	Laboratory activities
Nuclear and Atomic Structure	
1. Types of subatomic Particles	On-line atomic modeling
2. The nucleus	\bullet Phet and Molecular workbench
3. Mass Spectroscopy \& Isotopes	• SP 3, 5, 6
4. Stability of the Nucleus	
5. Atomic Structure	
6. Rutherford Experiment	
7. Cathode Ray Experiment	
8. Atomic Structure Terms	
9. Electromagnetic Radiation	
10. Quantization of energy	
11. Photoelectric Effect	
12. PES data	
13. Bohr Atom	
14. Spectroscopy	
15. Orbital Model of Atom	
16. Aufbau Diagram	
17. Paramagnetism	
18. Quantum Model	

Activity: Students will complete activities on interactive websites modeling electrons in atoms and molecules

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions. Learning Objectives: $1.9,1.10,1.11,2.14,2.17,2.19,2.20,2.22,2.23,2.24,2.252 .26$ 2.27. 2.28

Textbook Chapter(s): 8,9,10,12

Unit \& Topics	Laboratory activities
Periodicity and Introduction to Bonding	Guided Inquiry:
- Atomic Properties	Guided Inquiry Lab \#9: ‘Can the Individual
- Periodic Law	Components of Quick Ache relief Be Used to
- Elemental Properties	resolves Consumer Complaints’? [SP 3]

- Types of Bonds
- Metallic Bonding
- Properties of Group One
- Properties of Group Two
- Metals vs. Non-Metals
- Multiple Oxidation Sates of Transition Metals
- Ionic Bonding
- Ionic Bonding and Potential Energy Diagrams
- Energy of Formation of Ionic Compounds
- Lattice Energy

Activity: Students will use graphs and data to justify exceptions to identified trends and present information in a class discussion.

Spring
Big Idea 2: Chemical and physical properties of materials can be explained by the structure and arrangement of atoms, ions, or molecules and the forces between them.
Learning Objectives: $2.11,2.13,2.18,2.20,2.21,2.22,2.29,2.30,2.31,2.32,5.9$
Textbook Chapters: 9, 10, 11

Unit \& Topics	Laboratory activities
Covalent Bonding and Molecules	Synthesis of an Ester

1. Types of Covalent Bonds
2. Non-polar Covalent Bonds
3. Polar Covalent Bonds
4. Coordinate Covalent-Bonds - Lewis Acids and Bases
5. Lewis Structures
6. Resonance
7. Hybridization
8. Molecular Geometry
9. Energy Effects on Molecules

Synthesis of an Ester

- Synthesis of methyl salicylate
- SP 1, 4, 5, 6

Separation of a Dye Mixture Using Chromatography

- SP 1, 6

10. Isomerism
11. Classification of Molecules
12. Intermolecular Interactions
13. Dipole Moments
14. Types of Compounds
15. Properties of Metallic, Molecular, Macromolecular and Ionic Compounds
Activity: Students will choose from a list of common organic molecules. They will research the structure, characteristics, and purpose of the molecule and will build a 3-d model of the molecule.
