A native of Seattle, Professor Sullivan earned his A.B. degree (with honors) in physics from the University of Chicago in 1976. After a 5-year stint in industry, he returned to Seattle and obtained his PhD in experimental condensed matter physics from the University of Washington in 1986.
Professor Sullivan added expertise in the area of nonlinear dynamics while doing post-doctoral research at UC-Santa Barbara and Los Alamos National Laboratory. He joined the faculty at Kenyon in 1991 and, together with his students, has done research in turbulent fluid dynamics, colloid physics and computational pattern formation.
Tim received a Traditional Fulbright award in Sri Lanka for the 2008-2009 academic year. He worked in the Department of Physics at the University of Peradeniya, Kandy, Sri Lanka where he developed a computational physics course for the department. Check out Tim's weblog on his travels and visit to Sri Lanka.
Areas of Expertise
Computational condensed matter physics.
Education
1986 — Doctor of Philosophy from University of Washington
1976 — Bachelor of Arts from Univ Chicago
Courses Recently Taught
PHYS 102
Good Nukes, Bad Nukes
PHYS 102
Nuclear power produces needed energy, but nuclear waste threatens our future. Nuclear weapons make us strong, but dirty bombs make us vulnerable. Nuclear medicine can cure us, but nuclear radiation can kill us. Radiocarbon dating tells us about the past, but it can challenge religious faith. This course is designed to give each student the scientific knowledge necessary to understand and participate in public discussions of nuclear issues. The concepts include classification of nuclei, the types of energy (radiation) released in nuclear reactions, the interactions of that radiation with matter, including human health effects, and the design of nuclear reactors and nuclear weapons. Hands-on demonstrations and experiments will explore radioactive decay, antimatter, transmutation of atoms, nuclear detectors and interactions of radiation with matter. We will apply the core concepts to understanding contemporary issues, such as electric power generation using nuclear energy, including its environmental effects; advances in nuclear medicine; the challenges of preventing nuclear weapons proliferation; the threat of "dirty bombs"; and dating the universe. We also will cover the history of the Manhattan Project and the use of nuclear weapons that brought an end to World War II. The course will offer a field trip to at least one significant nuclear site in Ohio. This course is designed to be accessible to any student. No prerequisite.
PHYS 146
Modern Physics Lab
PHYS 146
This laboratory course is a corequisite for all students enrolled in PHYS 135 or 145. The course meets one afternoon each week and is organized around weekly experiments demonstrating the phenomena of waves, optics, X-rays, and atomic and nuclear physics. Lectures cover the theory and instrumentation required to understand each experiment. Experimental techniques include the use of lasers, X-ray diffraction and fluorescence, optical spectroscopy, and nuclear counting and spectroscopy. Students are introduced to computer-assisted graphical and statistical analysis of data, as well as the analysis of experimental uncertainty. Prerequisite: PHYS 131 or 141 and concurrent enrollment in PHYS 145. Offered every spring.
PHYS 241
Fields and Spacetime Laboratory
PHYS 241
This laboratory course is a corequisite for all upperclass students enrolled in PHYS 240. The course is organized around experiments demonstrating various phenomena associated with the special theory of relativity and electric and magnetic fields. Lectures cover the theory and instrumentation required to understand each experiment. Laboratory work emphasizes computerized acquisition and analysis of data, the use of a wide variety of modern instrumentation and the analysis of experimental uncertainty. Prerequisite: PHYS 140 and 141 or equivalent and concurrent enrollment in PHYS 240. Offered every fall.
PHYS 245
Oscillations and Waves
PHYS 245
The topics of oscillations and waves serve to unify many subfields of physics. This course begins with a discussion of damped and undamped, free and driven, and mechanical and electrical oscillations. Oscillations of coupled bodies and normal modes of oscillations are studied along with the techniques of Fourier analysis and synthesis. We then consider waves and wave equations in continuous and discontinuous media, both bounded and unbounded. The course may also treat properties of the special mathematical functions that are the solutions to wave equations in non-Cartesian coordinate systems. Prerequisite: PHYS 240. Offered every spring.
PHYS 270
Introduction to Computational Physics
PHYS 270
As modern computers become more capable, a new mode of investigation is emerging in all science disciplines using computers to model the natural world and solving model equations numerically rather than analytically. Thus, computational physics is assuming co-equal status with theoretical and experimental physics as a way to explore physical systems. This course will introduce students to the methods of computational physics, numerical integration, numerical solutions of differential equations, Monte Carlo techniques and others. Students will learn to implement these techniques in the computer language C, a widely used high-level programming language in computational physics. In addition, the course will expand students' capabilities in using a symbolic algebra program (Mathematica) to aid in theoretical analysis and in scientific visualization. Prerequisite: PHYS 240 and MATH 112 or permission of instructor. Offered every spring.
PHYS 340
Classical Mechanics
PHYS 340
This course begins by revisiting most of the Newtonian mechanics learned in introductory physics courses but with added mathematical sophistication. A major part of the course will be spent understanding an alternate description to that of the Newtonian picture: the Lagrange-Hamilton formulation. The course will also cover the topics of motion in a central field, classical scattering theory, motion in non-inertial reference frames and dynamics of rigid body rotations. Prerequisite: PHYS 245 and MATH 213. Offered every other year.
PHYS 370
Thermodynamics and Statistical Mechanics
PHYS 370
This introduction to thermodynamics and statistical mechanics focuses on how microscopic physical processes give rise to macroscopic phenomena; that is, how, when averaged, the dynamics of atoms and molecules can explain the large-scale behavior of solids, liquids and gases. We extend the concept of conservation of energy to include thermal energy, or heat and develop the concept of entropy for use in determining equilibrium states. We then apply these concepts to a wide variety of physical systems, from steam engines to superfluids. Prerequisite: PHYS 245 and MATH 213. Offered every other year.
PHYS 380
Introduction to Electronics
PHYS 380
This course will build upon the foundation developed in PHYS 240 and 241 for measuring and analyzing electrical signals in DC and AC circuits, introducing students to many of the tools and techniques of modern electronics. Familiarity with this array of practical tools will prepare students for engaging in undergraduate research opportunities as well as laboratory work in graduate school or industry settings. Students will learn to use oscilloscopes, meters, LabVIEW and various other tools to design and characterize simple analog and digital electronic circuits. The project-based approach used in this and associated courses (PHYS 381 and 382) fosters independence and creativity. The hands-on nature of the labs and projects will help students build practical experimental skills including schematic and data sheet reading, soldering, interfacing circuits with measurement or control instruments and troubleshooting problems with components, wiring and measurement devices. In each electronics course, students will practice documenting work thoroughly, by tracking work in lab notebooks with written records, diagrams, schematics, data tables, graphs and program listings. Students will also engage in directed analysis of the theoretical operation of components and circuits through lab notebook explanations, worksheets and occasional problem sets. Students may be asked to research and present to the class a related application of the principles learned during investigations. This course is required as part of the one (1) unit of upper-level experimental physics coursework to complete the major in physics. Prerequisite: PHYS 240. Offered every year and runs the first half of the semester only.
PHYS 381
Projects in Electronics 1
PHYS 381
In this course, students will explore circuit design and analysis for active and passive analog circuit elements, from the physics of the components (semiconductor diodes, transistors) to the behavior of multi-stage circuits. Experiments will explore transistors, amplifiers, amplifier design and frequency-sensitive feedback networks. Prerequisite: PHYS 380 (may be taken in the same semester). Offered in alternate years and runs the second half of the semester only.
PHYS 382
Projects in Electronics 2
PHYS 382
In this course, students will explore applications of integrated circuits (ICs), the fundamental building blocks of electronic devices such as personal computers, smart phones and virtually every other electronic device in use today. Taking a two-pronged approach, the course will include experimentation with basic ICs such as logic gates and timers as well as with multipurpose ICs such as microcontrollers that can be programmed to mimic the function of many basic ICs. Prerequisite: PHYS 380 (may be taken in the same semester). Offered in alternate years and runs in the second half of the semester only.
SCMP 401
Scientific Computing Seminar
SCMP 401
This capstone course is intended to provide an in-depth experience in computational approaches to science. Students will work on individual computational projects in various scientific disciplines. Each student will give several presentation to the class throughout the semester. Permission of the instructor and program director required.This interdisciplinary course does not count toward the completion of any diversification requirement. Prerequisite: SCMP 118 or PHYS 270, senior standing, completion of at least 0.5 units of an intermediate course and at least 0.5 units of a contributory course.