Professor Itagaki's training has been in insect chemosensory neurobiology, especially the physiological and anatomical correlates of gustation and olfaction. More recently, in collaboration with Chris Gillen and Drew Kerkhoff in Biology and Judy Holdener and Brad Hartlaub in Math, Itagaki and his students have been involved in a wide-ranging analysis of the morphology and physiology underlying metabolic scaling in insects.
He came to Kenyon in 1990 from John Hildebrand's lab at the University of Arizona where he was a post-doc. His previous training was at Duke (Ph.D.) and at Yale (B.S.).
Areas of Expertise
Neurobiology, mechanisms of perception and reaction to stimuli, physiological and anatomical bases of gustation (taste) in insects, metabolic physiology.
Education
1984 — Doctor of Philosophy from Duke University
1979 — Bachelor of Science from Yale University
Courses Recently Taught
BIOL 115
Energy in Living Systems
BIOL 115
Energy flow is a unifying principle across a range of living systems, from cells to ecosystems. With energy flow as a major theme, this course covers macromolecules, cells, respiration and photosynthesis, physiology and homeostasis, population and community interactions, and ecosystems. Throughout the course, the diversity of life is explored. The course also introduces students to the process of scientific thinking through discussion of research methodology and approaches. This course is required for the major and as such, Biology majors should take this class prior to the junior year. No prerequisite. Offered every year. Required for the major although AP or IB credit can be applied against this course.
BIOL 266
Cell Biology
BIOL 266
This course is designed to introduce studenst to the wide variety of questions being asked by researchers in this exciting field and the approaches they are taking to answer these questions. This course complements BIOL 263 in content, concentrating on the nongenomic aspects of the cell. We will cover topics such as biological membranes and ion channels, cell organelles and their function, cell regulation, and intercellular and intracellular communication. This counts toward the upper-level cellular/molecular biology requirement for the major. Prerequisite: BIOL 116. Prerequisite or corequisite: CHEM 121 or 122. Generally offered every other year..
BIOL 267
Experimental Cell Biology
BIOL 267
This laboratory course is designed to complement BIOL 266. The topics covered in the laboratory will expose the student to some of the standard techniques used in modern cell biology. The laboratories also will illustrate some of the fundamental ideas of the field. Instead of covering a wide variety of techniques and preparations superficially, we will concentrate on a select few, covering them in greater depth. Some topics that will be covered are protein separation, cell permeability and cell motility. Prerequisite: BIOL 109Y-110Y. Prerequisite or corequisite: BIOL 266. Generally offered every other year. This counts toward the upper-level laboratory requirement.
BIOL 358
Neurobiology
BIOL 358
The study of the nervous system is a field that has experienced explosive growth in the past few decades. This course is designed to introduce the student to modern neurobiology by covering the basic foundations as well as the latest results from current research. Subject matter will range from the biophysics of membranes and ion channels, through sensory integration and simple behaviors, to the development of the nervous system. Rather than cover a wide variety of topics superficially, we will concentrate more time on selected topics that illustrate the current thinking of neurobiologists. Experience in math and/or physics is strongly recommended. This counts toward the upper-level organismal biology/physiology requirement for the major. Prerequisite: BIOL 116 and at least one biology lecture course at the 200-level or one 300-level NEUR lecture course. Generally offered every other year.
BIOL 359
Experimental Neurobiology
BIOL 359
This is a laboratory designed to complement the lecture course. We will concentrate either on the different intracellular and extracellular electrophysiological recording techniques commonly used in the field to illustrate both motor and sensory aspects of nervous-system function or on the molecular aspects of nervous system function molecular. We will conclude with a series of independent projects that will bring together the ideas covered earlier in the course. Prerequisite: BIOL 109Y-110Y. Prerequisite or corequisite: BIOL 358. Generally offered every other year. This counts toward the upper level laboratory requirement.
BIOL 475
Senior Seminar
BIOL 475
In this capstone seminar, students explore current research topics in biology. Each section will explore a different fundamental concept in biology that spans the range of biology from ecosystems to molecules. Students analyze, critique, and integrate information from research articles they connect specific studies to broader biological questions and they propose future work that refines and extends prior studies. Student communicate their insights and analyses in both oral and written formats. Assignments include short essays, student presentations, student-led classes, peer review, and writing workshops. This course counts toward the upper-level lecture course requirement for the biology major. Prerequisite: senior standing and biology or molecular biology major.
Academic & Scholarly Achievements
2013
Itagaki, H. (2013) The use of mock NSF-type grant proposals and blind peer review as the capstone assignment in upper-level neurobiology and cell biology courses. J. Undergrad. Neurosci. Educ. 12:A75-A84.
2012
Sears, K.E.*, A.J. Kerkhoff, A. Messerman* and H. Itagaki (2012) Ontogenetic scaling of metabolism, growth, and assimilation: testing metabolic scaling theory with Manduca sexta larvae. Physiol. Biochem. Zool. 85:159-173.
2006
Gillen, C.M, C.R. Blair*, N.R. Heilman*, M. Somple*, M. Stulberg*, R. Thombre*, N. Watson*, K.M. Gillen and H. Itagaki (2006) The cation-chloride cotransporter, masBSC, is widely expressed in Manduca sexta tissues. J. Insect Physiol. 52:661-668.
2003
Wasserman, S.L.* and H. Itagaki (2003) The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. Journal of Insect Physiology. 49:271-280. (pdf)
1999
Mitchell, B., H. Itagaki, and M.-P. Rivet (1999) Peripheral and central structures involved in insect gustation. Microscopy Research and Technique. 47:401-415. (pdf)