Recently developed techniques allow researchers to cool atoms to temperatures in the microKelvin to nanoKelvin range and have revolutionized the scope and applications of experimental atomic physics. These methods have enabled the study of new low-temperature phases of matter, the implementation of quantum gates and quantum simulators, and exquisitely precise measurements of space and time.
Aaron Reinhard and his coworkers use the techniques of laser cooling and trapping to study the interactions among ultracold, highly-excited atoms, also known as Rydberg atoms. The strong interactions among Rydberg atoms give rise to an effect which suppresses laser excitation, called the Rydberg excitation blockade. The blockade is an essential component of schemes to implement quantum gates using neutral atoms. Aaron and his students aim to understand processes called state-mixing interactions which cause the blockade to function less effectively. These interactions are unwanted in the context of neutral…
Read More
Recently developed techniques allow researchers to cool atoms to temperatures in the microKelvin to nanoKelvin range and have revolutionized the scope and applications of experimental atomic physics. These methods have enabled the study of new low-temperature phases of matter, the implementation of quantum gates and quantum simulators, and exquisitely precise measurements of space and time.
Aaron Reinhard and his coworkers use the techniques of laser cooling and trapping to study the interactions among ultracold, highly-excited atoms, also known as Rydberg atoms. The strong interactions among Rydberg atoms give rise to an effect which suppresses laser excitation, called the Rydberg excitation blockade. The blockade is an essential component of schemes to implement quantum gates using neutral atoms. Aaron and his students aim to understand processes called state-mixing interactions which cause the blockade to function less effectively. These interactions are unwanted in the context of neutral atom quantum information, and Aaron and his students hope that, by understanding them, they can help other researchers better avoid them in their quest to build a neutral atom quantum computer.
Areas of Expertise
Rydberg atoms, laser cooling and trapping, optics
Education
2008 — Doctor of Philosophy from University of Michigan
2003 — Bachelor of Science from Valparaiso University
2003 — Bachelor of Electrical Enginr from Valparaiso University
Courses Recently Taught
PHYS 100
A Certain Slant on Light
PHYS 100
For many centuries, both scientists and artists have pondered on the myriad compositions of light, including rainbows, shadows, colors and mirages. While the beauty of these phenomena are fascinating, it is also rewarding to grapple with the underlying theory that explains them. In this course, students will explore how light can be modelled as a ray, wave or a particle, and use these ideas to explain concepts such as reflection, refraction, scattering, diffraction and absorption. Several in-class laboratory exercises will be performed in order to strengthen the conceptual understanding of light. Throughout the course, the focus will be to explain various phenomena, ranging from fiber-optic technology to pointillism. A final project, which synthesizes the conceptual understanding of light, is required, and students will be encouraged to follow their interests, through various forms, in order to fulfill it. While the course will have some mathematical content -- simple algebra and geometry -- it is open to any student. No prerequisite.
PHYS 131
Introduction to Experimental Physics I
PHYS 131
This laboratory course meets one afternoon each week and is organized around weekly experiments that explore the phenomena of classical mechanics and electromagnetism, including motion, forces, fluid mechanics and conservation of energy and momentum. Lectures cover the theory and instrumentation required to understand each experiment. Experimental techniques emphasize computerized acquisition and analysis of video images to study motion. Students are introduced to computer-assisted graphical and statistical analysis of data as well as the analysis of experimental uncertainty. Prerequisite: concurrent enrollment in PHYS 130 (or PHYS 140 for sophomores enrolled in PHYS 140). Offered every fall.
PHYS 135
General Physics II
PHYS 135
This course focuses on a wide variety of physics topics relevant to students in the life sciences. Topics include wave phenomena, geometrical and physical optics, elementary quantum theory, atomic physics, X-rays, radioactivity, nuclear physics and thermodynamics. When possible, examples will relate to life-science contexts. The course will be taught using a combination of lectures, in-class exercises, homework assignments and examinations. Prerequisite: PHYS 130 and concurrent enrollment in PHYS 136. Offered every spring.
PHYS 136
Introduction to Experimental Physics II
PHYS 136
This laboratory course meets one afternoon each week and is organized around weekly experiments that explore the phenomena of wave phenomena, geometrical and physical optics, elementary quantum theory, atomic physics, X-rays, radioactivity, nuclear physics and thermodynamics. Lectures cover the theory and instrumentation required to understand each experiment. Students will continue to develop skills in computer-assisted graphical and statistical analysis of data as well as the analysis of experimental uncertainty. Prerequisite: concurrent enrollment in PHYS 135. Offered every fall.
PHYS 140
Classical Physics
PHYS 140
This lecture course is the first in a three-semester, calculus-based introduction to physics. Topics include the kinematics and dynamics of particles and solid objects; work and energy; linear and angular momentum; and gravitational, electrostatic and magnetic forces. PHYS 140, 145 and 240 are recommended for students who might major in physics and is also appropriate for students majoring in other sciences and mathematics, particularly those who are considering careers in engineering. The course will be taught using a combination of lectures, in-class exercises, homework assignments and examinations. Prerequisite: concurrent enrollment in MATH 111, (if not previously taken) and PHYS 141 (first-year students) or PHYS 131 (sophomore students). Open only to first-year and sophomore students. Offered every fall.
PHYS 355
Optics
PHYS 355
The course begins with a discussion of the wave nature of light. The remainder of the course is concerned with the study of electromagnetic waves and their interactions with lenses, apertures of various configurations and matter. Topics include the properties of waves, reflection, refraction, interference, and Fraunhofer and Fresnel diffraction, along with Fourier optics and coherence theory. Prerequisite: PHYS 350 or permission of instructor. Offered every other year.
PHYS 365
Quantum Mechanics II
PHYS 365
This course extends the formalism of quantum mechanics and applies it to a variety of physical systems. Topics covered may include atomic and molecular spectra, nuclear structure and reactions, NMR, scattering, perturbation theory, quantum optics, open system dynamics and quantum entanglement. Prerequisite: PHYS 360
PHYS 380
Introduction to Electronics
PHYS 380
This course will build upon the foundation developed in PHYS 240 and 241 for measuring and analyzing electrical signals in DC and AC circuits, introducing students to many of the tools and techniques of modern electronics. Familiarity with this array of practical tools will prepare students for engaging in undergraduate research opportunities as well as laboratory work in graduate school or industry settings. Students will learn to use oscilloscopes, meters, LabVIEW and various other tools to design and characterize simple analog and digital electronic circuits. The project-based approach used in this and associated courses (PHYS 381 and 382) fosters independence and creativity. The hands-on nature of the labs and projects will help students build practical experimental skills including schematic and data sheet reading, soldering, interfacing circuits with measurement or control instruments and troubleshooting problems with components, wiring and measurement devices. In each electronics course, students will practice documenting work thoroughly, by tracking work in lab notebooks with written records, diagrams, schematics, data tables, graphs and program listings. Students will also engage in directed analysis of the theoretical operation of components and circuits through lab notebook explanations, worksheets and occasional problem sets. Students may be asked to research and present to the class a related application of the principles learned during investigations. This course is required as part of the one (1) unit of upper-level experimental physics coursework to complete the major in physics. Prerequisite: PHYS 240. Offered every year and runs the first half of the semester only.
PHYS 381
Projects in Electronics 1
PHYS 381
In this course, students will explore circuit design and analysis for active and passive analog circuit elements, from the physics of the components (semiconductor diodes, transistors) to the behavior of multi-stage circuits. Experiments will explore transistors, amplifiers, amplifier design and frequency-sensitive feedback networks. Prerequisite: PHYS 380 (may be taken in the same semester). Offered in alternate years and runs the second half of the semester only.
PHYS 382
Projects in Electronics 2
PHYS 382
In this course, students will explore applications of integrated circuits (ICs), the fundamental building blocks of electronic devices such as personal computers, smart phones and virtually every other electronic device in use today. Taking a two-pronged approach, the course will include experimentation with basic ICs such as logic gates and timers as well as with multipurpose ICs such as microcontrollers that can be programmed to mimic the function of many basic ICs. Prerequisite: PHYS 380 (may be taken in the same semester). Offered in alternate years and runs in the second half of the semester only.
PHYS 385
Advanced Experimental Physics 1
PHYS 385
This course is an introduction to upper-level experimental physics that will prepare students for work in original research in physics and for work in industry applications of physics. Students will acquire skills in experimental design, observation, material preparation and handling, and equipment calibration and operation. Experiments will be selected to introduce students to concepts, techniques and equipment useful in understanding physical phenomena across a wide range of physics subdisciplines, with the twofold goal of providing a broad overview of several branches of experimental physics and preparing students to undertake any experiments in PHYS 386 and 387. This course is required as part of the one (1) unit of upper-level experimental physics coursework to complete the major in Physics. Prerequisite: PHYS 241 and 245. Offered every year and runs the first half of the semester only.
PHYS 386
Advanced Experimental Physics 2
PHYS 386
In this course students will explore fundamental physical interactions between light and matter, such as Compton scattering, Rayleigh and Mie scattering, and matter-antimatter annihilation, while also learning to use common nuclear and optical detection and analysis techniques. Prerequisite: PHYS 385 (may be taken in the same semester). Offered in alternate years and runs the second half of the semester only.
PHYS 387
Advanced Experimental Physics 3
PHYS 387
In this course students will probe the structure of solids using X-ray crystallography and atomic force microscopy, study the physical properties of semiconductors, and use the manipulation of magnetic fields to examine the resonant absorption of energy in atoms and nuclei. Prerequisite: PHYS 385 (may be taken in the same semester). Offered in alternate years and runs the second half of the semester only.
PHYS 493
Individual Study
PHYS 493
Individual studies may involve various types of inquiry: reading, problem solving, experimentation, computation, etc. To enroll in individual study, a student must identify a physics faculty member willing to guide the course and work with that professor to develop a description. The description should include topics and content areas, learning goals, prior coursework qualifying the student to pursue the study, resources to be used (e.g., specific texts, instrumentation), a list of assignments and the weight of each in the final grade, and a detailed schedule of meetings and assignments. The student must submit this description to the Physics Department chair. In the case of a small-group individual study, a single description may be submitted and all students must follow that plan. The amount of work in an individual study should approximate the work typically required in other physics courses of similar types at similar levels, adjusted for the amount of credit to be awarded. An individual study course in physics is designed for .25 unit of credit. Individual study courses should supplement, not replace, courses regularly offered by the department. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study preferably the semester before, so that there is time to devise the proposal and seek departmental approval before the established deadline. Individual studies do not count towards the QR (quantitative reasoning) requirement. If a student wishes to satisfy the QR requirement through an individual study in physics, they must receive approval through the college petition process.